网站菜单
日记 - logarithm change base
* 日记 | ziyang-bai | logarithm change base
Avatar 作者: ziyang-bai ( 2026/01/24 00:19)
阅读量: 9
Theorem
Prove that:
log_a(b)=log_c(b)/log_c(a)
where a, b, c > 0 and a, c unequal 1.
Answer:
Proof
Let x=log_a(​b).
By the definition of a logarithm, we can rewrite this in exponential form:
a^x=b
Taking logarithms to the base c of both sides of the equation:
log_c​(a^x)=log_c(​b)
Using the power law of logarithms, loga​(Mk)=kloga​M:
xlog_c(​a)=log_c(​b)
Rearranging to make x the subject:
x=log_c(​b)/log_c(​a​)
Hence, since x=loga​b, it follows that:
log_a(​b)=log_c(​b)/log_c(​a)​
■ Q.E.D
« 上一页 (第137页 共5634页) 下一页 »
* (0) *
评论: (1)
* 日记 | ziyang-bai | logarithm change base
官方QQ群-310379632
© DCMS-Social